M.Sc. Entrance Test 2013, Department of Statistics, Presidency University.

Answer all questions. This is closed book, closed notes test. Only a calculator is allowed during the test. Put the page number on the top of each page.

1. Let X and Y be identically distributed as $\operatorname{Normal}(0,1)$ with $\operatorname{Cov}(X, Y)=\rho$. Show that $E(Z)=\sqrt{\frac{1-\rho}{\pi}}$, where $Z=\max (X, Y)$. (5 points)
2. (a) If n indistinguishable balls are to be placed in n cells, what is the probability that exactly one cell remains empty? (4 points)
(b) Let U_{1}, U_{2}, U_{3} be independently distributed Uniform $(0,1)$ random variables. Find the probability that the quadratic equation $U_{1} x^{2}+2 U_{2} x+U_{3}=0$ will have all real roots. (6 points)
3. Suppose that the random variables $Y_{1}, Y_{2}, \ldots, Y_{n}$ satisfy $Y_{i}=\beta x_{i}+\epsilon_{i}, i=1,2, \ldots, n$, where $x_{1}, x_{2}, \ldots, x_{n}$ are fixed constants and $\epsilon_{1}, \epsilon_{2}, \ldots, \epsilon_{n}$ are iid $N\left(0, \sigma^{2}\right), \sigma^{2}$ being unknown.
(a) Find a two-dimensional sufficient statistic for $\left(\beta, \sigma^{2}\right)$.(5 points)
(b) Find the MLE of β and show that it is unbiased for β.(3 points)
(c) Find the distribution of the MLE of β.(4 points)
(d) Show that $\frac{\sum Y_{i}}{\sum x_{i}}$ is an unbiased estimator of β.(3 points)
(e) Calculate the exact variance of $\frac{\sum Y_{i}}{\sum x_{i}}$. (3 points)
4. A non-negative random variable U has cdf F and density $f=F^{\prime}$; its mean μ and variance σ^{2} are both finite. A game is offered as follows: choose any non negative number c; if $U>c$ then you win the amount c; otherwise you win nothing.
(a) Find an equation to characterize the value of c that maximizes the expected gain. (3 points)
(b) Give a characterization of c in terms of the hazard rate $\lambda(x):=\frac{f(x)}{1-F(x)}, x>0$. (3 points)
(c) Derive c explicitly for an exponential random variable with rate μ. (4 points)

- 5. Give the key block arrangements of a balanced confounding for $\left(2^{4}, 2^{2}\right)$-experiment into minimum number of replicates such that all the 2 -, 3 - and 4 -factor interactions get partially confounded. Also find the ratio of the amount of loss in information of those interactions due to the experiment. (7 points)

6. Let (X, Y) have a bivariate normal distribution with all parameters unknown. On the basis of a random sample of size n, how will you test whether the random variables X and Y are independently distributed? (5 points)
7. A unit is selected at random from a population consisting of N units numbered $1,2, \ldots, N$ and the value (say y_{1}) of a study variable y is observed for the selected unit. Next every k-th unit is taken in a circular way and the y-value is observed for each of a total of n units. If these values be $y_{1}, y_{2}, \ldots, y_{n}$, find the expectation of $T=\frac{1}{n} \sum_{i=1}^{n} y_{i}$, in terms of the whole set of population values. (5 points)
8. (a) Define a p-component random vector and mention the fundamental properties of its distribution function. (6 points)
(b) When is a p-component random vector X said to follows p-variate normal distribution with mean vector μ and covariance matrix Σ ? (2 points)
9. (a) Determine whether $S=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in R^{3}: x_{1}+2 x_{2}+3 x_{3}=4\right\}$ is a subspace or not. (2 points)
(b) Mention any 5 subspaces of R^{2}. (1 point)
(c) Prove or disprove: If U_{1}, U_{2}, W are subspaces of a vector space V such that $U_{1}+W=U_{2}+W$, then $U_{1}=U_{2}$. (4 points)
(d) Let V be finite dimensional and U be a subspace of V such that dimension of $U=$ dimension of V. Prove that $U=V$. (4 points)
(e) Find the Echelon form of the following matrix and hence find the rank:

$$
M=\left[\begin{array}{llll}
2 & 4 & 3 & 1 \\
1 & 2 & 5 & 0 \\
3 & 6 & 0 & 5 \\
4 & 8 & 1 & 2
\end{array}\right] \cdot(5 \text { points })
$$

10. Based on a random observation X drawn from $\operatorname{Beta}(\theta, 1)$ distribution, most powerful level- α test for testing $H_{0}: \theta=1$ against $H_{1}: \theta=2$ is given as follows:
Reject H_{0} if $X>1-\alpha$ and accept otherwise.
(a) Check whether this test is UMP against $H_{1}: \theta>1$. (5 points)
(b) Examine whether the size and the level of the test are the same if H_{0} states that $\theta<1$. (5 points)
11. Suppose X_{1} and X_{2} are random observations drawn from a population with pdf $f_{\theta}(x)=\theta x^{\theta-1}$, where $\theta>0$ and $0<x<1$.
Show that $\log \frac{1}{\sqrt{X_{1} X_{2}}}$ is the MVUE of $\frac{1}{\theta}$. (6 points)
