M.Sc. Entrance Test 2013,

Department of Statistics, Presidency University.

Answer all questions. This is closed book, closed notes test. Only a calculator is allowed during the test. Put the page number on the top of each page.

- 1. Let X and Y be identically distributed as Normal(0,1) with $Cov(X,Y) = \rho$. Show that $E(Z) = \sqrt{\frac{1-\rho}{\pi}}$, where Z = max(X,Y). (5 points)
- 2. (a) If n indistinguishable balls are to be placed in n cells, what is the probability that exactly one cell remains empty? (4 points)
 - (b) Let U_1, U_2, U_3 be independently distributed Uniform (0,1) random variables. Find the probability that the quadratic equation $U_1x^2 + 2U_2x + U_3 = 0$ will have all real roots. (6 points)
- 3. Suppose that the random variables Y_1, Y_2, \ldots, Y_n satisfy $Y_i = \beta x_i + \epsilon_i$, $i = 1, 2, \ldots, n$, where x_1, x_2, \ldots, x_n are fixed constants and $\epsilon_1, \epsilon_2, \ldots, \epsilon_n$ are iid $N(0, \sigma^2)$, σ^2 being unknown.
 - (a) Find a two-dimensional sufficient statistic for (β, σ^2) . (5 points)
 - (b) Find the MLE of β and show that it is unbiased for β . (3 points)
 - (e) Find the distribution of the MLE of β . (4 points)
 - (d) Show that $\sum_{x_i} Y_i$ is an unbiased estimator of β . (3 points)
 - (e) Calculate the exact variance of $\frac{\sum Y_i}{\sum x_i}$. (3 points)
- 4. A non-negative random variable U has cdf F and density f = F'; its mean μ and variance σ^2 are both finite. A game is offered as follows: choose any non negative number c; if U > c then you win the amount c; otherwise you win nothing.
 - (a) Find an equation to characterize the value of c that maximizes the expected gain. (3 points)
 - (b) Give a characterization of c in terms of the hazard rate $\lambda(x) := \frac{f(x)}{1 F(x)}, \ x > 0.$ (3 points)
 - (c) Derive c explicitly for an exponential random variable with rate μ . (4 points)
- 5. Give the key block arrangements of a balanced confounding for $(2^4, 2^2)$ -experiment into minimum number of replicates such that all the 2-,3- and 4-factor interactions get partially confounded. Also find the ratio of the amount of loss in information of those interactions due to the experiment. (7 points)

- 6. Let (X,Y) have a bivariate normal distribution with all parameters unknown. On the basis of a random sample of size n, how will you test whether the random variables X and Y are independently distributed? (5 points)
 - 7. A unit is selected at random from a population consisting of N units numbered 1, 2, ..., N and the value (say y_1) of a study variable y is observed for the selected unit. Next every k-th unit is taken in a circular way and the y-value is observed for each of a total of n units. If these values be $y_1, y_2, ..., y_n$, find the expectation of $T = \frac{1}{n} \sum_{i=1}^{n} y_i$, in terms of the whole set of population values. (5 points)
- 8. (a) Define a p-component random vector and mention the fundamental properties of its distribution function. (6 points)
 - When is a p-component random vector X said to follows p-variate normal distribution with mean vector μ and covariance matrix Σ ? (2 points)
- 9. (a) Determine whether $S = \{(x_1, x_2, x_3) \in R^3 : x_1 + 2x_2 + 3x_3 = 4\}$ is a subspace or not. (2 points)
 - (b) Mention any 5 subspaces of R^2 . (1 point)
 - (c) Prove or disprove: If U_1, U_2, W are subspaces of a vector space V such that $U_1 + W = U_2 + W$, then $U_1 = U_2$. (4 points)
 - (d) Let V be finite dimensional and U be a subspace of V such that dimension of U= dimension of V. Prove that U = V. (4 points)
 - (e) Find the Echelon form of the following matrix and hence find the rank:

$$M = \begin{bmatrix} 2 & 4 & 3 & 1 \\ 1 & 2 & 5 & 0 \\ 3 & 6 & 0 & 5 \\ 4 & 8 & 1 & 2 \end{bmatrix} .$$
 (5 points)

- 10. Based on a random observation X drawn from Beta $(\theta,1)$ distribution, most powerful level- α test for testing $H_0: \theta=1$ against $H_1: \theta=2$ is given as follows: Reject H_0 if $X>1-\alpha$ and accept otherwise.
 - (a) Check whether this test is UMP against $H_1: \theta > 1$. (5 points)
 - (b) Examine whether the size and the level of the test are the same if H_0 states that $\theta < 1$. (5 points)
- 11. Suppose X_1 and X_2 are random observations drawn from a population with pdf $f_{\theta}(x) = \theta x^{\theta-1}$, where $\theta > 0$ and 0 < x < 1. Show that $\log \frac{1}{\sqrt{X_1 X_2}}$ is the MVUE of $\frac{1}{\theta}$. (6 points)