PRESIDENCY UNIVERSITY, KOLKATA M. Sc. Admission Test, 2013 for admission to the 1st Semester M. Sc. in Physics Time 2 hrs. Full Marks 100 ## Each question carries 5 marks - 1. Show that $\int_{-\infty}^{\infty} \frac{\sin x}{x} dx = \pi.$ - 2. A particle of mass m is free to move along the circumference of a vertical circle of radius α situated in the gravitational field of the earth. Obtain an expression for the Hamiltonian of the particle. - 3. Two point masses m₁ and m₂ are connected by a massless inextensible string of length *l*. The string is passing through a hole in a smooth table such that m₁ is on the table surface and m₂ hangs suspended. Assume that m₂ undergoes only vertical motion while m₁ undergoes motion in the plane of the tables. Derive the equation(s) of motion and show that the angular momentum of the system is conserved. - 4. Compute the flux of water (density = 1 ton/m^3) through the parabolic cylinder $\mathbf{R}: \mathbf{y} = \mathbf{x}^2$, $0 \le \mathbf{x} \le 2$, $0 \le \mathbf{z} \le 3$, if the velocity vector is $\mathbf{v} = (3\mathbf{z}^2, 6, 6\mathbf{x}\mathbf{z})$. The speed is measured in m/s. - 5. A neutral π^0 -meson decays into two high energetic photons. The rest mass of the π^0 -meson is 135 MeV/c². - (a) Find the energy of the photons if the π^0 -meson decays at rest. - (b) If the π^0 -meson has total energy of 426 MeV in the laboratory system and decays in flight, what are the limits on the energy of the photon? - 6. A rocket ship of proper length L leaves the earth vertically at a speed of 4c/5. A light signal sent vertically reaches the tail of the rocket at t=0 according to both earth and rocket clocks. When does the signal reach the nose of the rocket according to (a) rocket clock (b) earth clock? Do not use Lorentz transformation. - 7. Calculate the percentage of molecules of an ideal gas having free paths larger than twice the mean free path. - 8. An electric current of 10 A is maintained for 1 s in a resistor of 25 Ω and at an initial temperature 27 °C. The resistor has mass 0.01 kg and $C_p = 0.84$ KJ/kgK. Find the entropy change of the resistor if (i) its temperature is maintained at 27 °C and (ii) it is thermally insulated. - 9. Four perfect polarising plates are stacked so that the axis of each is turned 30° clockwise with respect to the preceding plate. How much of the intensity of an incident unpolarised beam of light is transmitted by the stack? - 10. A parallel beam of light of wavelength 5460 Å is incident at an angle of 30° on a plane transmission grating having 6000 lines/cm rulings. Find the highest order spectrum that can be observed in that system. - 11. A pure crystalline material with lattice constant 4 Å is having no impurities or dopants present in the structure. If the material illuminated by white light appears red in transmitted light, calculate the approximate band gap for this material. - 12. Operator L is defined by LP = [H,P], where P is another operator and H is some fixed operator. Show that L is a linear operator. - 13. (a) Which of the following functions can be chosen as a valid solution of Schrödinger equation? e^{-r^2} , χ^2 , e^{ikx} , e^{-x} . What type of solution (bound state or scattering state) do they represent? - (b) Is the operator d/dx Hermitian in the interval $(-\infty, \infty)$? - 14. Test if the matrix $\begin{pmatrix} a & 1 \\ 0 & a \end{pmatrix}$ can be diagonalised, where a is a real number. - 15. Obtain the electric field of a point dipole with dipole moment \vec{p} , if the potential due to it is $\phi(\vec{r}) = \frac{1}{4\pi\varepsilon_0} \frac{\vec{p} \cdot \vec{r}}{r^3}$. - 16. An ideal operational amplifier has the output connected to the inverting input terminal through a 500 Ω resistance. A 5 V rms ac signal is applied through a series resistance of 5 k Ω between the inverting input terminal and the ground. Calculate the output voltage and the current through the 500 Ω resistor. - 17. What acceleration potential must be applied to electrons to cause electron diffraction on (220) planes of gold (Au) at 5 °C? Given: atomic volume of Au having FCC structure = 10.2×10^{-6} m³/mole. - 18. Consider a system of 3 noninteracting spin $\frac{1}{2}$ particles in a magnetic field B. If the system has energy $-\mu B$, where μ is the component of magnetic moment along the field direction, find the probability that the first spin will assume the value of $+\mu$ and determine the mean value of such a spin. - 19. What is the kinetic energy of the α particle of the at-rest decay of $Po_{84}^{212} \rightarrow Pb_{82}^{208} + \alpha$? Given $(\Delta M)c^2 = 8.95$ MeV, where ΔM is the mass difference between that of initial and final particles. - 20. State, with suitable justification, whether the following two elementary particle decay and production processes are allowed or forbidden. (i) n→e⁺+e⁻ (ii) π⁻+p →Σ⁻+K⁺