PRESIDENCY UNIVERSITY, KOLKATA
 (Admission Test 2013)
 M. Sc. in Mathematics

Answer all the questions

1. (a) Find all the complex numbers z such that $\tan z=2+i$.
(b) Show that $i \log \frac{x-i}{x+i}=\pi-2 \tan ^{-1} x$ if $x>0$.
2. (a) Give non-zero complex numbers z_{1} and z_{2} such that $\log z_{1} z_{2} \neq \log z_{1}+\log z_{2}$.
(b) Let $f(z)$ be a complex polynomial with roots $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{r}$ with multiplicity $m_{1}, m_{2}, \ldots, m_{r}$. Find the roots of $f\left(z^{4}\right)$ with their multiplicity.
(c) Let $A_{1}, A_{2}, \ldots, A_{n}$ be distinct elements of group $(P(X), \Delta)$, where Δ denotes the operation of symmetric difference. Find the number of elements of the subgroup $\left\langle A_{1}, A_{2}, \ldots, A_{n}\right\rangle$ generated by the A_{i}.
3. (a) Let $A(S)$ denote the group of all permutations of S (i.e., one-one maps of S onto itself); and let T be any non-empty proper subset of S. Let $A^{\prime}(T)=\{\sigma \in A(S): \sigma(x)=x, \forall x \in S \backslash T\}$. Show that $A^{\prime}(T) \simeq A(T)$, the group of permutations of T. Also check if $A^{\prime}(T)$ is a normal subgroup of $A(S)$.
(b) Prove that the centre $Z\left(S_{n}\right)=\{e\}$.
4. For $N \triangleleft G$, and both N and G / N finitely generated, prove that G too is finitely generated.
5. A linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is given by $T(x, y, z)=(x+2 z, 2 y+z, x+z)$ for all $(x, y, z) \in \mathbb{R}^{3}$. Prove that there is at least one non-zero vector $\alpha \in \mathbb{R}^{3}$ such that $T(\alpha)=(1+\sqrt{2}) \alpha$. Find such a vector.
6. (a) If $A=\left(\begin{array}{rrrrr}1 & 2 & 2 & 1 & -1 \\ 0 & 2 & 2 & -1 & -2 \\ 2 & 6 & 2 & 1 & -4 \\ 1 & 4 & 0 & 0 & -3\end{array}\right)$ and $T: \mathbb{R}^{5} \rightarrow \mathbb{R}^{4}$ be a linear transformation defined by $T x=A x$, $x \in \mathbb{R}^{5}$, find the rank and nullity of T and a basis of the null space of T.
(b) If L, M, N are subspaces of a vector space V, give an example to show that the subspace $L \cap(M+N)$ need not be equal to $(L \cap M)+(L \cap N)$.
7. Let V be the real vector space of function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ given by $f(x, y)=a x^{2}+b x y+c y^{2}+d x+e y+f$. Let $T: V \rightarrow V$ be the mapping defined by $T(f)=\frac{\partial}{\partial x} \int f(x, y) d y+\frac{\partial}{\partial y} \int f(x, y) d x$. Show that T is linear. Determine the matrix that represents T relative to the ordered basis B of V given by $B=$ $\left\{x^{2}, x y, y^{2}, x, y, 1\right\}$.
8. Let P and Q be point of intersection of fixed curve $a x^{2}+2 h x y+b y^{2}=10$ and a variable straight line $l x+m y=1$. Now, if $O P$ and $O Q, O$ being the origin, are to remain at right angles, find the locus of the foot of the perpendicular from the origin to the line $l x+m y=1$.
9. The section of the cone whose guiding curve is $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1, z=0$, by the plane $x=0$ is a rectangular hyperbola. Find the locus of the vertex of the cone.
10. Let A be an infinite bounded subset of \mathbb{R}. We know that A has at least one limit point.
(a) Prove that A has both a smallest limit point α and a largest limit point β.
(b) Construct an infinite set B in \mathbb{R} such that $\sup B \in\{\alpha, \beta\}$.
11. (a) Prove that the sequence $\left\{\frac{10^{k n}}{(1.001)^{n}}\right\}$, where k is a positive real number, converges to zero.
$1+4$

5
(b) Let $\sum a_{n}$ be a series of reals, and let $\sum b_{n}$ be a series obtained from $\sum a_{n}$ by putting parantheses randomly; and let $\sum c_{n}$ be the series obtained from $\sum a_{n}$ by suppressing all zero terms. Check which of the following is valid:
(i) $\sum a_{n}$ converges $\Rightarrow \sum b_{n}$ converges.
(ii) $\sum b_{n}$ converges $\Rightarrow \sum c_{n}$ converges.
(iii) $\sum c_{n}$ converges $\Rightarrow \sum a_{n}$ converges.
12. Test the convergence of the sequence $\left\{a_{n}\right\}$ defined by $a_{n+1}=a_{n} \cdot \frac{a_{n}^{2}+3 a}{3 a_{n}^{2}+a}, n \in \mathbb{N}$, where $a>0$ and $a_{1} \neq 0$.
13. Give an example of an ordering in \mathbb{C} which makes \mathbb{C} into a linearly ordered set. Check if the order make \mathbb{C} into an ordered field, and if the ordering is complete.
14. (a) Let $D=\left\{0,1, \frac{1}{2}, \ldots, \frac{1}{n}, \ldots\right\}$; and let $f: D \rightarrow \mathbb{R}$, be any function. Show that f is a continuous function on D if and only if $\left\{f\left(\frac{1}{n}\right)\right\} \rightarrow f(0)$.
(b) Let $\left\{a_{i}: i \in I\right\}$ be any family of non-negative reals. Define

$$
\sum_{i \in I} a_{i}=\sup \left\{\sum_{i \in F} a_{i}: F \text { is a non-empty finite subset of } I\right\} .
$$

Prove that $\sum_{i \in I} a_{i}<\infty$ if and only if $\left\{i \in I: a_{i} \neq 0\right\}$ is at most countable.
15. Find the general solution of the linear differential equation

$$
x^{2}(\log x)^{2} \frac{d^{2} y}{d x^{2}}-2 x \log x \frac{d y}{d x}+\left[2+\log x-2(\log x)^{2}\right] y=x^{2}(\log x)^{3}
$$

16. A particle of mass m moves under a central attractive force $m \mu\left(5 r^{-3}+8 c^{2} r^{-5}\right)$ and is projected from an
apse at a distance c with a velocity $\frac{3 \sqrt{\mu}}{c}$. Prove that the orbit is $r=\cos \frac{2}{3} \theta$.
17. Three equal forces act on a body. One at the point $(1,0,0)$ parallel to y-axis, the second at the point $(0,1,0)$ parallel to z-axis and the third at the point $(0,0,1)$ parallel to x-axis, the axes being rectangular. Find the equation of the central axis.
18. The values of a polynomial $f(x)$ for different values of x are as follows:

x	-1	0	1	2	3	4
$f(x)$	-18	-8	-4	6	34	92

What more can you say about f ? Also find $f(5)$.
19. Find a polynomial $P(x)$ of minimal degree the values of which at $x=1,2,3$ and 4 are $-6,-6,-2$ and 12 respectively. Is it unique? Justify your answer.
20. (a) Let Ω be an n-element set with uniform probability and let the events $A, B \subseteq \Omega$ be independent. Show that if A has i elements, then B must have $j=k \frac{n}{\operatorname{gcd}(i, n)}$ elements, where $k \in\{0,1,2, \ldots, \operatorname{gcd}(i, n)\}$.
(b) Let A be an event in a probability space. Prove that the following conditions are equivalent:
15. Find the gencral solution of the linear differential equation

x	-1	0	1	2	3	4
$f(x)$	-18	-8	-4	6	34	92

i. A, B are independent events for any B.
ii. $P(A)=0$ or 1 .

