PU/AT/UG/2013

Department of Chemistry, Presidency University, Kolkata 700 073

Booklet Series: A

F.M.: 100

Subject: Chemistry

Time: 2 Hours

All questions are of equal value. For each wrong answer, 0.5 mark will be deducted. Use of calculator is not permitted

- **1.** The solubility product of PbSO₄ in water at 298 K is 1.06×10^{-8} . Which of the following is true regarding its solubility (s) in x (M) solution of H₂SO₄ (assume s to be negligibly small compared to x): (A) $s = 1.06 \times 10^{-8} / x$ (M), **(B)** $s = 1.06 \ge 10^{-8} x$ (M), **(C)** s = x (M), **(D)** None.
- 2. For a reaction in which A and B form C, the following data were obtained

of a reaction in which if and B form e, the following data were obtained			
	$[A](mol.L^{-1})$	$[B](mol.L^{-1})$	Formation of C (mol.L ^{-1} .s ^{-1})
	0.03	0.03	1.8 x 10 ⁻⁵
	0.06	0.06	7.2 x 10 ⁻⁵
	0.06	0.09	16.2 x 10 ⁻⁵
T 1 (· · · · (1) D ·		$(\mathbf{O}) \mathbf{D} \leftarrow L(\mathbf{D})^2 (\mathbf{D}) \mathbf{N}$

The rate of reaction is: (A) Rate = k [A][B], (B) Rate = k [A]², (C) Rate = k [B]², (**D**) None.

3. The standard potential for the electrode reaction $Cu^{2+}_{(aq)} + 2e = Cu$ at 298 K is + 0.336 V (hydrogen scale). The single electrode potential for this couple containing 0.01 mol L⁻¹ of $Cu^{2+}_{(aq)}$ would be:

- (A) +0.277 V (B) -0.277 V (C) +0.337 V (D) None.
- **4.** K_c for the reaction SO₂ + 0.5O₂ = SO₃ at 873 K is 61.7 (with concentrations in M). The relationship between K_p and K_c for this reaction is: (A) $K_p = K_c$, (B) $K_p > K_c$, (C) $K_p < K_c$, (D) None.
- 5. An insulated compartment has two chambers separated by a valve. One chamber contains an ideal gas whereas the other is evacuated. When the valve is opened, the temperature of the gas: (A) increases, (B) decreases, (C) remains constant, (D) either increases or remains constant.
- 6. For the reaction $2A + B \longrightarrow$ Products, when the concentration of B alone was doubled, $t_{1/2}$ did not change, and when the concentrations of both A and B are doubled, the rate increases by a factor of 4. The unit of rate constant is: (A) s⁻¹, **(B)** L.mol⁻¹.s⁻¹, **(C)** mol.L⁻¹.s⁻¹, **(D)** L².mol⁻².s⁻¹
- 7. A 0.2 N solution of sugar is isotonic with a solution of common salt. Both solutions have the same volume and temperature. The concentration of common salt solution is: (A) 0.1 M, (B) 0.2 M, (C) 0.3 M, (D) 0.4 M.
- 8. The most effective electrolyte in causing the flocculation of a negatively charged arseneous sulfide is: (A) CaCl₂, **(B)** MgCl₂, **(C)** $K_3[Fe(CN)_6]$, **(D)** AlCl₃.
- 9. The highest equivalent conductance is observed in the aqueous solution of :
- (A) 0.050 M NaCl, (B) 0.020 M NaCl, (C) 0.010 M NaCl, (D) 0.005 M NaCl.
- 10. A box of 1 L capacity is divided into two equal compartments by a thin partition. The compartments are filled with 6 g of H₂ and 16 g of CH₄. The pressure in each compartment is recorded as P atm. at 300 K. Upon removal of the partition, the total pressure would be: (A) P atm., (B) 2P atm., (C) P/2 atm., (D) P/4 atm.
- 11. In a solvent phenol dimerizes to the extent of 60%. It's molar mass (in g.mol⁻¹), observed from cryoscopic experiment should be: (A) > 94, (B) < 94, (C) 94, (D) unpredictable.
- 12. Aluminium oxide may be electrolyzed at 1273 K to give Al metal (at. wt. = 27). The cathode reaction is $Al^{3+} + 3e \longrightarrow Al$. Preparation of 5.12 kg of Al metal by this method would require:
 - **(B)** $5.49 \ge 10^4 \text{ C}$, **(C)** $1.83 \ge 10^7 \text{ C}$, **(D)** $5.49 \ge 10^7 \text{ C}$. (A) $5.49 \times 10^2 \text{ C}$,
- 13. NH₄HS (s) dissociates to NH₃ (g) and H₂S (g). At a particular temperature, the total pressure of the gas mixture at the equilibrium of dissociation reaction is P. The equilibrium constant of the dissociation reaction is: (A) $K_{\rm p} = P^2$, (B) $K_{\rm p} = P^{2/4}$, (C) $K_{\rm p} = P^{1/2}$, (D) $K_{\rm P} = P^{3/2}$
- 14. The dissociation equilibrium of $AB_2(g)$ is: $2AB_2(g) \implies 2AB(g) + B_2(g)$. The degree of dissociation of $AB_2(g)$ is x and $x \ll 1$. The relation among x, the equilibrium constant (K_p) and the total pressure (P) is: (A) $x = (2K_p/P)^{1/2}$, (B) $x = K_p/P$, (C) $x = 2K_p/P$, (D) $x = (2K_p/P)^{1/3}$
- **15.** The enthalpies of formation of Al_2O_3 (s) and Fe_2O_3 (s) are -1670 kJ.mol⁻¹ and -834 kJ.mol⁻¹ respectively. The ΔH of the reaction : Fe_2O_3 (s) + 2Al (s) \rightarrow Al₂O₃ (s) + 2Fe (s) is: (A) 836 kJ.mol⁻¹, (B) 2504 kJ.mol⁻¹, (C) -2504 kJ.mol⁻¹, (D) -836 kJ.mol⁻¹.
- 16. Which of the following results in a decrease in entropy? (A) crystallization of sucrose from solution (B) rusting of iron (C) conversion of ice into water (D) vaporisation of camphor.
- 17. For a spontaneous process at all temperatures, which of the following is correct? (A) Both ΔH and ΔS are positive, (**B**) Δ H is negative and Δ S is positive, (**C**) Δ H is positive and Δ S is negative, (**D**) Both Δ H and Δ S are negative.
- 18. An ideal gas expands reversibly and isothermally from 5 L to 10 L. The internal energy change is:
- (A) 2 ln2, **(B)** -2 ln2, (C) 5, (D) 0
- **19.** The half cell reactions for rusting of iron are: $\text{Fe}^{2+} + 2e \rightarrow \text{Fe}_{(s)}$, $\text{E}^0 = -0.44 \text{ V}$ and $2\text{H}^+ + 0.5 \text{ O}_2 + 2e \rightarrow \text{H}_2\text{O}$, $E^0 = +1.23$ V. ΔG^0 (kJ/mole) value of the reaction is (A) -76 (B) -322 (C) -122 (D) -176
- 20. Which of the following contains maximum number of lone pairs on the central atom? (A) ClO₃⁻ (B) XeF₄ (C) SF₄ (D) I₃⁻ **21.** {X} + H₂SO₄ \rightarrow {Y}, (a colourless gas with irritating smell); {Y} + K₂Cr₂O₇ + H₂SO₄ \rightarrow Green solution. The species {X} and {Y} are: (A) Cl⁻, Cl₂ (B) SO₃²⁻, SO₂ (C) S²⁻, H₂S (D) CO₃²⁻, CO₂
- 22. Which of the following pair of cations can be separated by NaOH solution?
 (A) Pb²⁺, Al³⁺ (B) Sn²⁺, Pb²⁺ (C) Cu²⁺, Zn²⁺ (D) Zn²⁺, Pb²⁺.
- **23.** Which type of isomerism is shown by $[Co(NH_3)_4Br_2]Cl?$
- (A) Geometerical and ionization (B) Optical and ionization (C) Geometrical and optical (D) Geometrical only.
- 24. X mL of 0.05 M solution of a salt mixture comprising of Na₂CO₃. NaHCO₃ is titrated against 0.05 M HCl. When phenolphthalein is used as indicator A mL of HCl is required and B mL of said acid is required separately when methyl orange is the indicator. Ratio of B/A is: (A) 3 (B) 1/3 (C) 5 (D) 2.
- **25.** Which of (I) CN^{-} (II) N_{2} (III) C_{2} have same bond order? (A) I, III (B) II, III (C) I, III (D) I, II. **26.** Which of the following has the maximum number of unpaired electrons? (A) Mg^{2+} (B) Ti^{3+} (C) V^{3+} (D) Fe^{3+} .
- **27.** A wavelength associated with a golf ball weighing 200 g moving at a speed of 5 m/h isof the order: (A) 10^{-10} m (B) 10^{-20} m (C) 10^{-30} m (D) 10^{-40} m.

- 28. 0.023 g of sodium metal is reacted with 100 mL distilled water. The pH of the resulting solution is: (A) 10 (B) 11 (C) 12 (D) 13.
- 29. Ratio of the fourth to second Bohr's orbit of hydrogen is: (A) 2 (B) 4 (C) 6 (D) 0.5.
- **30.** The volume of water (V_2) which must be added to V_1 mL of a concentrated solution of molarity M_1 to prepare a dilute solution of molarity M_2 is: (A) V_1M_1/M_2 (B) $[V_1 (M_1 + M_2)]/M_2$ (C) $[V_1 (M_1 - M_2]/M_2$ (D) $[V_1(M_1 - M_2)]/M_1$. 31. ²³⁸U₉₂ disintegrates to give an end product ²⁰⁶Pb₈₂. The total number of particles emitted are
- (A) 6α and 8β (B) 6α and 6β (C) 4α and 10β (D) 8α and 6β .
- **32.** A radioactive element lost 50% activity in 3 days 20 hours. The decay constant of the element is: (A) $7.532 \times 10^{-3} \text{ h}^{-1}$ (B) $7.532 \times 10^{-2} \text{ h}^{-1}$ (C) $7.532 \times 10^{-4} \text{ h}^{-1}$ (D) $7.532 \times 10^{-1} \text{ h}^{-1}$.
- 33. Four elements P, Q, R and S have atomic number 10, 19, 25 and 31, respectively. Indicate which of these are an alkali metal and a transition metal: (A) P, Q (B) Q, R, (C) R, S (D) P, S.
- **34.** When I is oxidized with MnO_4^- in alkaline medium I is converted to: (A) IO_3^- (B) I_2^- (C) IO_4^- (D) IO^- .
- 35. The decreasing order of the first ionization energy of the following elements is
- (A) He > H > Be > B (B) Be > B > H > He (C) H > He > Be > B (D) B > Be > He > H.
- **36.** The maximum number of carbon atoms and hydrogen atoms that could be coplanar in $Ph(CH_3)C=CH_2$ is respectively: (A) 8, 9 (B) 9, 8 (C) 8, 10 (D) 9, 10.
- **37.** The structure of ethyl cyanoacetate is:
- (A) CH₃CH₂OCOCH₂CN (B) CH₃CH₂COOCH₂CN (C) CH₃COOCH₂CH₂CN (D) CH₃COOCH₂CN.
- **38.** The number of optically active and optically inactive stereoisomers of 4-bromopent-2-ene is respectively: (A) 2, 2 (B) 4, 2 (C) 4, 0 (D) 2, 0
- 39. The compounds that could be used in aldol condensation and Cannizzaro reaction respectively are: (A) CH₃COCH₃, PhCHO (B) PhCHO, CH₃COCH₃ (C) CH₃CHO, (CH₃)₃CHO (D) CH₃CHO, HCHO
- **40.** An organic compound ($C_4H_{10}O_2$) on hydrolysis in aqueous acid produces two products. These are: (A) CH₃COOH, CH₃CH₂OH (B) CH₃COOH, CH₃OH (C) CH₃CH₂COOH, CH₃OH (D) CH₃CHO, CH₃OH.
- 41. Number of possible isomeric monobromoxylenes are: (A) 2 (B) 4 (C) 6 (D) 8.

iii) H₂O

42. Nitration of PhOCOPh mainly gives:

 $(*C = {}^{14}C)$

43.

(A) CH_3CHO , CH_3CH_2CHO (B) CH_3CHO , CHO, C

(C) CH₃ČHO, CH₃CHO, CH₃ČH₂CHO, CH₃CH₂CHO (D) ČH₃CHO, CH₃ČHO, ČH₃CH₂CHO, CH₃ČH₂CHO, CH₃ČH₂CHO, CH₃CH₂CHO, CH₃ 44. CH₃COCH₃ when sequentially treated with (i) Conc. H₂SO₄, heat (ii) Conc. HNO₃ & Conc. H₂SO₄, 0 °C (iii) Sn, HCl, (iv) NaNO₂, dil HCl, 0 °C (v) KI, heat, formed "X". Compound "X" is:

