Subject: Chemistry

F.M.: 100

Time: 2 Hours
All questions are of equal value. For each wrong answer, 0.5 mark will be deducted. Use of calculator is not permitted

1. The solubility product of PbSO_{4} in water at 298 K is 1.06×10^{-8}. Which of the following is true regarding its solubility (s) in $x(\mathrm{M})$ solution of $\mathrm{H}_{2} \mathrm{SO}_{4}$ (assume s to be negligibly small compared to x): (A) $s=1.06 \times 10^{-8} / x(\mathrm{M})$,
(B) $s=1.06 \times 10^{-8} x(\mathrm{M}), \quad$ (C) $s=x(\mathrm{M}), \quad$ (D) None.
2. For a reaction in which A and B form C, the following data were obtained

$[\mathrm{A}]\left(\mathrm{mol.L}^{-1}\right)$	$[\mathrm{B}]\left(\mathrm{mol.L}^{-1}\right)$	Formation of C $\left(\mathrm{mol} . \mathrm{L}^{-1} \cdot \mathrm{~s}^{-1}\right)$
0.03	0.03	1.8×10^{-5}
0.06	0.06	7.2×10^{-5}
0.06	0.09	16.2×10^{-5}

The rate of reaction is: (A) Rate $=k[\mathrm{~A}][\mathrm{B}]$, (B) Rate $=k[\mathrm{~A}]^{2}, \quad$ (C) Rate $=k[\mathrm{~B}]^{2}, \quad$ (D) None.
3. The standard potential for the electrode reaction $\mathrm{Cu}^{2+}{ }_{(\mathrm{aq})}+2 \mathrm{e}=\mathrm{Cu}$ at 298 K is +0.336 V (hydrogen scale). The single electrode potential for this couple containing $0.01 \mathrm{~mol} \mathrm{~L}^{-1}$ of $\mathrm{Cu}^{2+}{ }_{\text {(aq) }}$ would be: (A) $+0.277 \mathrm{~V}(\mathbf{B})-0.277 \mathrm{~V}(\mathbf{C})+0.337 \mathrm{~V}$ (D) None.
4. K_{c} for the reaction $\mathrm{SO}_{2}+0.5 \mathrm{O}_{2}=\mathrm{SO}_{3}$ at 873 K is 61.7 (with concentrations in M). The relationship between K_{p} and K_{c} for this reaction is: (A) $K_{\mathrm{p}}=K_{\mathrm{c}},(\mathbf{B}) K_{\mathrm{p}}>K_{\mathrm{c}}$, (C) $K_{\mathrm{p}}<K_{\mathrm{c}}$, (D) None.
5. An insulated compartment has two chambers separated by a valve. One chamber contains an ideal gas whereas the other is evacuated. When the valve is opened, the temperature of the gas: (A) increases, (B) decreases, (C) remains constant, (D) either increases or remains constant.
6. For the reaction $2 \mathrm{~A}+\mathrm{B} \longrightarrow$ Products, when the concentration of B alone was doubled, $t_{1 / 2}$ did not change, and when the concentrations of both A and B are doubled, the rate increases by a factor of 4 . The unit of rate constant is: $(\mathbf{A}) \mathrm{s}^{-1}$, (B) L. $\mathrm{mol}^{-1} \cdot \mathrm{~s}^{-1}$, (C) mol. $\mathrm{L}^{-1} \cdot \mathrm{~s}^{-1}$, (D) $\mathrm{L}^{2} \cdot \mathrm{~mol}^{-2} \cdot \mathrm{~s}^{-1}$.
7. A 0.2 N solution of sugar is isotonic with a solution of common salt. Both solutions have the same volume and temperature. The concentration of common salt solution is: (A) 0.1 M , (B) 0.2 M , (C) 0.3 M , (D) 0.4 M .
8. The most effective electrolyte in causing the flocculation of a negatively charged arseneous sulfide is: (A) CaCl_{2}, (B) MgCl_{2}, (C) $\mathrm{K}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$, (D) AlCl_{3}.
9. The highest equivalent conductance is observed in the aqueous solution of :
(A) $0.050 \mathrm{M} \mathrm{NaCl}, \quad$ (B) $0.020 \mathrm{M} \mathrm{NaCl}, \quad$ (C) $0.010 \mathrm{M} \mathrm{NaCl}, \quad$ (D) 0.005 M NaCl .
10. A box of 1 L capacity is divided into two equal compartments by a thin partition. The compartments are filled with 6 g of H_{2} and $16{\mathrm{~g} \text { of } \mathrm{CH}_{4} \text {. The pressure in each compartment is recorded as } P \mathrm{~atm} \text {. at } 300 \mathrm{~K} \text {. Upon removal of the partition, the }{ }^{\text {a }} \text {. }}^{2}$ total pressure would be: (A) P atm., (B) $2 P$ atm., (C) $P / 2 \mathrm{~atm}$., (D) $P / 4 \mathrm{~atm}$.
11. In a solvent phenol dimerizes to the extent of 60%. It's molar mass (in $\mathrm{g} \cdot \mathrm{mol}^{-1}$), observed from cryoscopic experiment should be: $(\mathbf{A})>94, \quad(B)<94, \quad$ (C) 94, \quad (D) unpredictable.
12. Aluminium oxide may be electrolyzed at 1273 K to give Al metal (at. wt. = 27). The cathode reaction is
$\mathrm{Al}^{3+}+3 \mathrm{e}^{-} \longrightarrow \mathrm{Al}$. Preparation of 5.12 kg of Al metal by this method would require:
$\begin{array}{llll}\text { (A) } 5.49 \times 10^{2} \mathrm{C}, & \text { (B) } 5.49 \times 10^{4} \mathrm{C}, & \text { (C) } 1.83 \times 10^{7} \mathrm{C}, & \text { (D) } 5.49 \times 10^{7} \mathrm{C}\end{array}$
13. $\mathrm{NH}_{4} \mathrm{HS}(\mathrm{s})$ dissociates to $\mathrm{NH}_{3}(\mathrm{~g})$ and $\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$. At a particular temperature, the total pressure of the gas mixture at the equilibrium of dissociation reaction is P. The equilibrium constant of the dissociation reaction is:
$\begin{array}{llll}\text { (A) } K_{\mathrm{p}}=P^{2}, & \text { (B) } K_{\mathrm{p}}=P^{2} / 4, & \text { (C) } K_{\mathrm{p}}=P^{1 / 2}, & \text { (D) } K_{\mathrm{P}}=P^{3 / 2}\end{array}$
14. The dissociation equilibrium of $\mathrm{AB}_{2}(\mathrm{~g})$ is: $2 \mathrm{AB}_{2}(\mathrm{~g}) \Longrightarrow 2 \mathrm{AB}(\mathrm{g})+\mathrm{B}_{2}(\mathrm{~g})$. The degree of dissociation of $\mathrm{AB}_{2}(\mathrm{~g})$ is x and $x \ll 1$. The relation among x, the equilibrium constant $\left(K_{\mathrm{p}}\right)$ and the total pressure (P) is: (A) $x=\left(2 K_{\mathrm{p}} / P\right)^{1 / 2}, \quad$ (B) $x=K_{\mathrm{p}} / P, \quad$ (C) $x=2 K_{\mathrm{p}} / P, \quad$ (D) $x=\left(2 K_{\mathrm{p}} / P\right)^{1 / 3}$.
15. The enthalpies of formation of $\mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})$ and $\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})$ are $-1670 \mathrm{~kJ} . \mathrm{mol}^{-1}$ and $-834 \mathrm{~kJ}^{2} \mathrm{~mol}^{-1} \quad$ respectively. The $\Delta \mathrm{H}$ of the reaction: $\mathrm{Fe}_{2} \mathrm{O}_{3}$ (s) $+2 \mathrm{Al}(\mathrm{s}) \longrightarrow \mathrm{Al}_{2} \mathrm{O}_{3}$ (s) +2 Fe (s) is:

16. Which of the following results in a decrease in entropy? (A) crystallization of sucrose from solution (B) rusting of iron (C) conversion of ice into water (D) vaporisation of camphor.
17. For a spontaneous process at all temperatures, which of the following is correct? (A) Both $\Delta \mathrm{H}$ and $\Delta \mathrm{S}$ are positive, (B) $\Delta \mathrm{H}$ is negative and $\Delta \mathrm{S}$ is positive, (C) $\Delta \mathrm{H}$ is positive and $\Delta \mathrm{S}$ is negative, (D) Both $\Delta \mathrm{H}$ and $\Delta \mathrm{S}$ are negative.
18. An ideal gas expands reversibly and isothermally from 5 L to 10 L . The internal energy change is:
(A) $2 \ln 2$,
(B) $-2 \ln 2$,
(C) $5, \quad$ (D) 0
19. The half cell reactions for rusting of iron are: $\mathrm{Fe}^{2+}+2 \mathrm{e} \rightarrow \mathrm{Fe}_{(\mathrm{s})}, \mathrm{E}^{0}=-0.44 \mathrm{~V}$ and $2 \mathrm{H}^{+}+0.5 \mathrm{O}_{2}+2 \mathrm{e} \rightarrow \mathrm{H}_{2} \mathrm{O}$, $\mathrm{E}^{0}=+1.23 \mathrm{~V} . \Delta \mathrm{G}^{0}(\mathrm{~kJ} /$ mole $)$ value of the reaction is $(\mathbf{A})-76(\mathbf{B})-322(\mathbf{C})-122$ (D) -176
20. Which of the following contains maximum number of lone pairs on the central atom? (A) $\mathrm{ClO}_{3}{ }^{-}(\mathbf{B}) \mathrm{XeF}_{4}(\mathbf{C}) \mathrm{SF}_{4}(\mathbf{D}) \mathrm{I}_{3}^{-}$
21. $\{\mathrm{X}\}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow\{\mathrm{Y}\}$, (a colourless gas with irritating smell); $\{\mathrm{Y}\}+\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow$ Green solution. The species $\{\mathrm{X}\}$ and $\{\mathrm{Y}\}$ are: (A) $\mathrm{Cl}^{-}, \mathrm{Cl}_{2}(\mathbf{B}) \mathrm{SO}_{3}{ }^{2-}, \mathrm{SO}_{2}(\mathbf{C}) \mathrm{S}^{2-}, \mathrm{H}_{2} \mathrm{~S}$ (D) $\mathrm{CO}_{3}{ }^{2-}, \mathrm{CO}_{2}$
22. Which of the following pair of cations can be separated by NaOH solution?
(A) $\mathrm{Pb}^{2+}, \mathrm{Al}^{3+}$ (B) $\mathrm{Sn}^{2+}, \mathrm{Pb}^{2+}$ (C) $\mathrm{Cu}^{2+}, \mathrm{Zn}^{2+}$ (D) $\mathrm{Zn}^{2+}, \mathrm{Pb}^{2+}$.
23. Which type of isomerism is shown by $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Br}_{2}\right] \mathrm{Cl}$?
(A) Geometerical and ionization (B) Optical and ionization (C) Geometrical and optical (D) Geometrical only.
24. X mL of 0.05 M solution of a salt mixture comprising of $\mathrm{Na}_{2} \mathrm{CO}_{3} . \mathrm{NaHCO}_{3}$ is titrated against 0.05 M HCl . When phenolphthalein is used as indicator $A \mathrm{~mL}$ of HCl is required and BmL of said acid is required separately when methyl orange is the indicator. Ratio of B/A is: (A) 3 (B) $1 / 3$ (C) 5 (D) 2 .
25. Which of (I) CN^{-}(II) N_{2} (III) C_{2} have same bond order? (A) I, III (B) II, III (C) I, III (D) I, II.
26. Which of the following has the maximum number of unpaired electrons? (A) Mg^{2+} (B) Ti^{3+} (C) V^{3+} (D) Fe^{3+}.
27. A wavelength associated with a golf ball weighing 200 g moving at a speed of $5 \mathrm{~m} / \mathrm{h}$ isof the order:
(A) $10^{-10} \mathrm{~m}$ (B) $10^{-20} \mathrm{~m}$ (C) $10^{-30} \mathrm{~m}$ (D) $10^{-40} \mathrm{~m}$.
28. 0.023 g of sodium metal is reacted with 100 mL distilled water. The pH of the resulting solution is: (A) 10 (B) 11 (C) 12 (D) 13
29. Ratio of the fourth to second Bohr's orbit of hydrogen is: (A) 2 (B) 4 (C) 6 (D) 0.5 .
30. The volume of water $\left(V_{2}\right)$ which must be added to $V_{1} \mathrm{~mL}$ of a concentrated solution of molarity M_{1} to prepare a dilute solution of molarity M_{2} is: $(\mathbf{A}) \mathrm{V}_{1} \mathrm{M}_{1} / \mathrm{M}_{2}(\mathbf{B})\left[\mathrm{V}_{1}\left(\mathrm{M}_{1}+\mathrm{M}_{2}\right)\right] / \mathrm{M}_{2}(\mathbf{C})\left[\mathrm{V}_{1}\left(\mathrm{M}_{1}-\mathrm{M}_{2}\right] / \mathrm{M}_{2}(\mathbf{D})\left[\mathrm{V}_{1}\left(\mathrm{M}_{1}-\mathrm{M}_{2}\right)\right] / \mathrm{M}_{1}\right.$
31. ${ }^{238} \mathrm{U}_{92}$ disintegrates to give an end product ${ }^{206} \mathrm{~Pb}_{82}$. The total number of particles emitted are
(A) 6α and 8β (B) 6α and 6β (C) 4α and 10β (D) 8α and 6β.
32. A radioactive element lost 50% activity in 3 days 20 hours. The decay constant of the element is:
(A) $7.532 \times 10^{-3} \mathrm{~h}^{-1}$ (B) $7.532 \times 10^{-2} \mathrm{~h}^{-1}$ (C) $7.532 \times 10^{-4} \mathrm{~h}^{-1}$ (D) $7.532 \times 10^{-1} \mathrm{~h}^{-1}$.
33. Four elements P, Q, R and S have atomic number 10, 19, 25 and 31, respectively. Indicate which of these are an alkali metal and a transition metal: (A) P, Q (B) Q, R, (C) R, S (D) P, S.
34. When I^{-}is oxidized with MnO_{4}^{-}in alkaline medium I^{-}is converted to: (A) $\mathrm{IO}_{3}^{-}(\mathbf{B}) \mathrm{I}_{2}$ (C) IO_{4}^{-}(D) IO^{-}.
35. The decreasing order of the first ionization energy of the following elements is
(A) $\mathrm{He}>\mathrm{H}>\mathrm{Be}>\mathrm{B}(\mathbf{B}) \mathrm{Be}>\mathrm{B}>\mathrm{H}>\mathrm{He}(\mathbf{C}) \mathrm{H}>\mathrm{He}>\mathrm{Be}>\mathrm{B}$ (D) $\mathrm{B}>\mathrm{Be}>\mathrm{He}>\mathrm{H}$.
36. The maximum number of carbon atoms and hydrogen atoms that could be coplanar in $\mathrm{Ph}\left(\mathrm{CH}_{3}\right) \mathrm{C}=\mathrm{CH}_{2}$ is respectively: (A) 8,9 (B) 9,8 (C) 8,10 (D) 9, 10 .
37. The structure of ethyl cyanoacetate is:
(A) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OCOCH}_{2} \mathrm{CN}(\mathbf{B}) \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOCH}_{2} \mathrm{CN}(\mathbf{C}) \mathrm{CH}_{3} \mathrm{COOCH}_{2} \mathrm{CH}_{2} \mathrm{CN}($ D $) \mathrm{CH}_{3} \mathrm{COOCH}_{2} \mathrm{CN}$.
38. The number of optically active and optically inactive stereoisomers of 4-bromopent-2-ene is respectively:
(A) 2, 2 (B) 4, 2 (C) 4, 0 (D) 2, 0
39. The compounds that could be used in aldol condensation and Cannizzaro reaction respectively are:
(A) $\mathrm{CH}_{3} \mathrm{COCH}_{3}$, $\mathrm{PhCHO}(\mathbf{B}) \mathrm{PhCHO}, \mathrm{CH}_{3} \mathrm{COCH}_{3}(\mathbf{C}) \mathrm{CH}_{3} \mathrm{CHO},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CHO}$ (D) $\mathrm{CH}_{3} \mathrm{CHO}$, HCHO
40. An organic compound $\left(\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}_{2}\right)$ on hydrolysis in aqueous acid produces two products. These are:
(A) $\mathrm{CH}_{3} \mathrm{COOH}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}(\mathbf{B}) \mathrm{CH}_{3} \mathrm{COOH}, \mathrm{CH}_{3} \mathrm{OH}(\mathbf{C}) \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}, \mathrm{CH}_{3} \mathrm{OH}$ (D) $\mathrm{CH}_{3} \mathrm{CHO}, \mathrm{CH}_{3} \mathrm{OH}$.
41. Number of possible isomeric monobromoxylenes are: (A) 2 (B) 4 (C) 6 (D) 8.
42. Nitration of PhOCOPh mainly gives:

43.

$$
\underset{\left(* \mathrm{C}={ }^{14} \mathrm{C}\right)}{\mathrm{CH}_{3} \stackrel{*}{\mathrm{CH}_{2} \mathrm{Br}}} \begin{aligned}
& \text { ii) } \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHO} \\
& \text { iii) } \mathrm{H}_{2} \mathrm{O}
\end{aligned} \quad \mathrm{~A} \xrightarrow[\text { heat }]{\text { i) } \mathrm{Mg} \text { dry ether }} \text { B } \xrightarrow[\text { ii) } \mathrm{Zn} \text {-dust, } \mathrm{H}_{2} \mathrm{O}]{\text { Conc. } \mathrm{H}_{2} \mathrm{SO}_{4}} \text { Products }
$$

Final products are:

(A) $\mathrm{CH}_{3} \stackrel{*}{\mathrm{C}} \mathrm{HO}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHO} \quad$ (B) $\mathrm{CH}_{3} \stackrel{*}{\mathrm{C}} \mathrm{HO}, \mathrm{CH}_{3} \mathrm{CHO}, \mathrm{CH}_{3} \mathrm{CH}_{2} \stackrel{*}{\mathrm{C}} \mathrm{HO}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHO}$

(C) $\mathrm{CH}_{3} \stackrel{*}{\mathrm{C}} \mathrm{HO}, \mathrm{CH}_{3} \mathrm{CHO}, \mathrm{CH}_{3} \stackrel{*}{\mathrm{C}} \mathrm{H}_{2} \mathrm{CHO}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHO}$ (D) $\stackrel{*}{\mathrm{C}} \mathrm{H}_{3} \mathrm{CHO}, \mathrm{CH}_{3} \stackrel{*}{\mathrm{C}} \mathrm{HO}, \stackrel{*}{\mathrm{C}} \mathrm{H}_{3} \mathrm{CH}_{2} \mathrm{CHO}, \mathrm{CH}_{3} \stackrel{*}{\mathrm{C}} \mathrm{H}_{2} \mathrm{CHO}$,
44. $\mathrm{CH}_{3} \mathrm{COCH}_{3}$ when sequentially treated with (i) Conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$, heat (ii) Conc. HNO_{3} \& Conc. $\mathrm{H}_{2} \mathrm{SO}_{4}, 0{ }^{\circ} \mathrm{C}$ (iii) $\mathrm{Sn}, \mathrm{HCl}$, (iv) NaNO_{2}, dil $\mathrm{HCl}, 0^{\circ} \mathrm{C}(\mathrm{v}) \mathrm{KI}$, heat, formed " X ". Compound " X " is:

(B)

 (D)

45.

46. Correct order of basicity of the compounds (1) $\mathrm{CH}_{3}-\mathrm{C}\left(\mathrm{NH}_{2}\right)=\mathrm{NH}$; (2) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NH}_{2}$; (3) (CH3) NH ; (4) $\mathrm{CH}_{3} \mathrm{CONH}_{2}$ are: (A) $2>1>3>4$ (B) $1>3>2>4$ (C) $1>2>3>4$ (D) $3>1>2>4$.
47. Which of the following compounds will be most readily dehydrated in aqueous alkali on heating?

48.

$$
\mathrm{Ph}_{3} \mathrm{CCOCH}_{3} \xrightarrow{\text { (i) } \mathrm{NaOH}, \mathrm{Cl}_{2} \quad \text { (ii) } \mathrm{H}^{+} \quad \text { (iii) } \mathrm{NH}_{3} \text {, heat } \quad \text { (iv) } \mathrm{KOH}, \mathrm{Br}_{2}} \mathbf{X}
$$

"X" is: (A) $\mathrm{Ph}_{3} \mathrm{CNH}_{2}$ (B) $\mathrm{Ph}_{3} \mathrm{CCH}_{2} \mathrm{NH}_{2}$ (C) $\mathrm{Ph}_{3} \mathrm{C}\left(\mathrm{NH}_{2}\right) \mathrm{CH}_{3}$ (D) $\mathrm{CH}_{3} \mathrm{NH}_{2}$
49." X " and " Y " in the reaction X (excess) $+\mathbf{Y}+$ aqueous $\mathrm{Ca}(\mathrm{OH})_{2}+$ Heat $\rightarrow \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{OH}\right)_{4}$ are:
(A) $\mathrm{HCHO}(\mathrm{X}) \& \mathrm{HCO}_{2} \mathrm{H}(\mathrm{Y})(\mathbf{B}) \mathrm{HCHO}(\mathrm{X}) \& \mathrm{CH}_{3} \mathrm{CHO}(\mathrm{Y})(\mathbf{C}) \mathrm{HCHO}(\mathrm{X}) \& \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}(\mathrm{Y})(\mathbf{D})$ None of these
50. Identify " X " and " Y " in the following reaction are: (\mathbf{A}) Ethyl butyrare (X), n-butanol(Y) (\mathbf{B}) Methyl butyrate (X), n-butanol(Y) (C) Methyl ethanoate (X), n-pentanol (Y) (D) Pentanoic acid (X), n-pentanol (Y)

