1. The standard potentials for the electrode processes $\mathrm{Zn}^{+2}+2 \mathrm{e}=\mathrm{Zn}$ and $\mathrm{Cu}^{+2}+2 \mathrm{e}=\mathrm{Cu}$ are respectively -
0.761 and +0.337 V . The reaction: $\mathrm{Zn}(\mathrm{s})+\mathrm{Cu}^{+2}+2 \mathrm{e}=\mathrm{Zn}^{+2}+\mathrm{Cu}$ is: (A) spontaneous, (B) non-spontaneous, (C) in equilibrium, (D) none of these.
2. Jahn-Teller distortion will be noted in (i) $\mathrm{e}^{4} \mathrm{t}_{2}{ }^{4}$ (ii) $\mathrm{t}_{2 \mathrm{~g}}{ }^{6} \mathrm{e}_{\mathrm{g}}{ }^{2}$ (iii) $\mathrm{t}_{2 \mathrm{~g}}{ }^{5} \mathrm{e}_{\mathrm{g}}{ }^{2}$ (iv) $\mathrm{e}^{2} \mathrm{t}_{2}{ }^{2}$
(A) I, ii, iii
(B) ii, iii
(C) iii, iv
(D) I, iii, iv
3. The dissociation constants of two acids HA and HB in aqueous solution are $1 \times 10^{-3}$ and $1 \times 10^{-5}$ respectively. How many times HA is stronger than HB? (A) 10 times, (B) 100 times, (C) 1000 times, (D) cannot be inferred.
4. A saturated solution of $\mathrm{KCl}(\mathrm{aq})$ is used to prepare salt bridge because: ( $\mathbf{A}$ ) the speed of $\mathrm{K}^{+}$is greater than that of $\mathrm{Cl}^{-},(\mathbf{B})$ the speed of $\mathrm{Cl}^{-}$is greater than that of $\mathrm{K}^{+},(\mathbf{C})$ the speeds of $\mathrm{K}^{+}$and $\mathrm{Cl}^{-}$are almost equal, (D) KCl is highly soluble in water.
5. The plot of $\log$ (mean ionic activity coefficient) vs. (ionic strength) ${ }^{1 / 2}$ for a dilute $\mathrm{NaCl}(\mathrm{aq})$ solutionl is: (A) linear with a positive slope, $(\mathbf{B})$ linear with a negative slope, $(\mathbf{C})$ independent of ionic strength, (D) none of these.
6. The weight-average molecular weight of a system containing equal number of particles of two polymeric samples with molecular weights of $M$ and $2 M$ is: (A) $3 M / 5$, (B) $5 M / 3$, (C) $3 M^{2} / 5$, (B) $5 M^{2} / 3$.
7. A unit cell of a crystal has the form of a cube. The angle between the normals to the pair of planes whose Miller indices are (010) and (100) is: (A) $0^{\circ}$, (B) $45^{\circ},(\mathbf{C}) 90^{\circ},(\mathbf{D})$ none of the above.
8. The specific conductivity of $0.01 \mathrm{~mol} \mathrm{dm}^{-3}$ aqueous acetic at 300 K is $19.5 \mu \mathrm{~S} \mathrm{~cm}^{-1}$ and the limiting molar conductivity of acetic acid at the same temperature is $390 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$. The degree of dissociation of this acid is: $\quad(\mathbf{A}) 0.5$, (B) 0.05 , (C) $5 \times 10^{-3}$, (D) $5 \times 10^{-7}$.
9. The vapour pressure of pure liquid $A$ is 0.80 atm . When a nonvolatile substance $B$ as added to $A$, its vapour pressure drops to 0.60 atm . The mole fraction of $B$ in the solution is: (A) 1.00 , (B) $0.75,(\mathbf{C}) 0.50$, (D) 0.25 .
10. The half life of a first order reaction is 50 s . Which of the following is correct for this reaction?
(A) The reaction is complete in 100 s , (B) the reaction begins after 50 s , (C) the quantity of the reactant remaining after 100 s is half of what remained after $50 \mathrm{~s},(\mathbf{D})$ none of these.
11. The energy (kJ) released when 1.0 g of ${ }_{92} \mathrm{U}^{235}+_{0} \mathrm{n}^{1} \rightarrow$ Fission products + Neutrons $+3.20 \times 10^{7} \mathrm{~J}$ is
(A) $12.75 \times 10^{8}$ (B) $18.60 \times 10^{8}$ (C) $8.20 \times 10^{7}$ (D) $6.55 \times 10^{7}$
12. Consider the system $2 \mathrm{~N}_{2} \mathrm{O}(\mathrm{g}) \Leftrightarrow 2 \mathrm{~N}_{2}(g)+\mathrm{O}_{2}(g), \Delta H=+163 \mathrm{~kJ}$. In which direction will an equilibrium system move to reestablish equilibrium if simultaneously $\mathrm{N}_{2} \mathrm{O}$ is added, $\mathrm{O}_{2}$ is removed, the volume is increased and the temperature is raised: (A) right, (B) left, (C) no change, (D) difficult to predict.
13. The reaction $\mathrm{CaO}(s)+\mathrm{H}_{2} \mathrm{O}(l) \rightarrow \mathrm{Ca}(\mathrm{OH})_{2}(s)$ is spontaneous at 298 K ; the reverse reaction becomes spontaneous at high temperature. This means that for the forward reaction: (A) both $\Delta H$ and $\Delta S^{0}$ are positive, (B) $\Delta H$ is positive, $\Delta S^{0}$ is negative, (C) $\Delta H$ is negative, $\Delta S^{0}$ is positive, (D) both $\Delta H$ and $\Delta S^{0}$ are negative.
14. 


(A)

(B)

(C)

(D)

15. The stretching frequency of $\mathrm{C}-\mathrm{H}$ bond in an organic compound appears at $2900 \mathrm{~cm}^{-1}$. The stretching frequency of C-D bond is: (A) $2130 \mathrm{~cm}^{-1}$, (B) $3500 \mathrm{~cm}^{-1}$, (C) $1450 \mathrm{~cm}^{-1}$, (D) $2900 \mathrm{~cm}^{-1}$.
16. Which of the following correctly identifies the mass ( $m$ ) and momentum ( $p$ ) of a photon? (A) $m=0, p=0$,
(B) $m=0, p \neq 0$, (C) $m \neq 0, p=0$, (D) $m \neq 0, p \neq 0$.
17. Which of the following compound(s) is/are decarboxylated easily on heating ?


${ }^{\text {iii) }} \mathrm{OOOC}$
$\begin{array}{llll}\text { (A) iii only } & \text { (B) I \& II } & \text { (C) ii only } & \text { (D) iv only }\end{array}$
18. The preferred conformation of trans-1,4-dimethylcyclohexane contains the following symmetry elements:
(A) $\mathrm{C}_{2}, \mathrm{C}_{3}$
(B) $\mathrm{C} 2, \sigma_{\mathrm{v}}$
(C) $\mathrm{C}_{2}, \sigma_{\mathrm{vh}}$
(D) $\mathrm{C}_{2}, \mathrm{~S}_{4}$
19. A photon of green light collides with a stationary electron. After the collision, the colour of the photon would be:(A) unchanged, (B) shifted towards red, (C) shifted towards blue, (D) changed to a colourless state.
20. A neutron has almost 2000 times the rest mass of an electron. Suppose that they both have 1 eV of energy. How do their wavelengths compare? (A) $\lambda$ (neutron) $=\lambda$ (electron), (B) $\lambda$ (neutron) $>\lambda$ (electron), (C) $\lambda$ (neutron) $<\lambda$ (electron), (D) cannot be predicted from the given information.
21. Increasing order of basicity of the following compounds(i-iv) is :




(A) i $>$ iii $>$ iv $>$ ii $\quad$ (B) iii $>$ i $>$ iv $>$ ii $\quad$ (C) iv $>$ I $>$ iii $>$ ii $\quad$ (D) iii $>$ iv $>$ I $>$ ii
22. For a certain reaction, $\Delta G^{0}$ is known at two different temperatures. From this information alone, one can calculate for the reaction: (A) $\Delta H,(\mathbf{B}) \Delta S^{0},(\mathbf{C})$ both of these, (D) none of these.
23. The de Broglie wavelength of a particle that has a kinetic energy of $E_{k}$ is $\lambda$. The wavelength is proportional to (A) $E_{k},(\mathbf{B}) 1 / E_{k}$, (C) $1 / \sqrt{E_{k}}$, (D) $E_{k}^{2}$.
24. Product of the following reaction is:

(A)

(B)
(C)

(D)

25. Structure of $\beta-\mathrm{D}-$ Mannose is:

26. Major product formed in the following reaction is

(A)

(B)

(C)

(D)

27. Frequency of a line of Lyman spectral series of $H$ atom $\left(R_{H}=109600 \mathrm{~cm}^{-1}\right)$ is $82200 \mathrm{~cm}^{-1}$. The transition of the electron is
(A) $2 \rightarrow 1$ (B) $3 \rightarrow 1$ (C) $4 \rightarrow 1$ (D) $5 \rightarrow 1$.
28. A mixture of $p-\mathrm{N}, \mathrm{N}$-dimethylaminobenzaldehyde $(\mathrm{ArCHO})$ and PhCHO is treated with aqueous ethanolic NaCN . Products formed are: (A) $\mathrm{ArCH}(\mathrm{OH}) \mathrm{COAr} \& \mathrm{PhCH}(\mathrm{OH})-\mathrm{COPh} \quad(\mathbf{B}) \mathrm{ArCH}(\mathrm{OH})-\mathrm{COAr} \& \mathrm{PhCH}(\mathrm{OH})-\mathrm{COPh} \&$ $\mathrm{ArCH}(\mathrm{OH})-\mathrm{COPh} \quad$ (C) $\mathrm{ArCO}-\mathrm{CH}(\mathrm{OH})-\mathrm{Ph} \& \mathrm{PhCH}(\mathrm{OH})-\mathrm{COPh} \quad$ (D) $\mathrm{ArCO}-\mathrm{CH}(\mathrm{OH}) \mathrm{Ph} \& \mathrm{PhCO}-\mathrm{CO}-\mathrm{Ph}$
29. The amount of $(\mathrm{a}, \mathrm{a})$ form present in the conformational equilibrium of trans-1,2-dichlorocyclohexane (I), cis-1,3dichlorocyclohexane (II) and trans- 1,4-dichlorocyclohexane (III) increases as
(A) I < II < III
(B) II $<$ III $<$ I
(C) III $<$ I $<$ II
(D) I $<$ III $<$ II
30. The major product of the following reaction is

$$
(\mathrm{S})-\mathrm{PhCH}(\mathrm{Me}) \mathrm{CHO} \xrightarrow{\mathrm{EtMgBr}}
$$

(A)

(B)

(C)

(D)

31. Binding energy per nucleon (Mev) of ${ }_{8} \mathrm{O}^{16}$ (given: mass of ${ }_{8} \mathrm{O}^{16}=15.9949 \mathrm{amu},{ }_{1} \mathrm{H}^{1}=1.007825 \mathrm{amu}$, and ${ }_{0} \mathrm{n}^{1}=$ 1.008665 amu ) is $(\mathbf{( A )} 6.799$ (B) 8.199 (C) 7.977 (D) 7.177
32. The species $\mathbf{X}$ and $\mathbf{Y}$ in the following schemes are respectively
(i) [8] Annulene $\xrightarrow{\mathrm{SbF}_{5}, \mathrm{SO}_{2} \mathrm{ClF},-78{ }^{\circ} \mathrm{C}} \mathbf{X}$
(ii)

$(\mathbf{A})$ aromatic, antiaromatic $\quad(\mathbf{B})$ nonaromatic, aromatic $\quad(\mathbf{C})$ aromatic, homoaromatic $\quad(\mathbf{D})$ antiaromatic, homoaromatic
33. Which of the following statements is correct? (A) LUMO energy of ethene is greater than that of 1,3-butadiene.
(B) HOMO energy of ethene is greater than that of 1,3-butadiene. (C) HOMO of allyl cation is a nonbonding orbital (D) HOMO of allyl anion is an antibonding orbital.
34. Treatment of an acidic silicate solution with excess ammonium molybdate gives a yellow coloration. The composition of the yellow compound is
(A) $\mathrm{Si}(\mathrm{OH})_{4} \cdot\left(\mathrm{MoO}_{3}\right)_{12}$
(B) $\mathrm{H}_{2} \mathrm{SiO}_{3} .\left(\mathrm{MoO}_{3}\right)_{12}$
(C) $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SiO}_{3} \cdot \mathrm{Mo}_{12} \mathrm{O}_{40}$
(D) no specific composition.
35. Treatment of a black precipitate ( X ) with aquaregia gives colourles solution (Y) which when treated with insufficient stannous chloride gives white precipitate $(\mathrm{Z})$. Identify $\mathrm{X}, \mathrm{Y}$ and Z .
(A) $\mathrm{Hgs}, \mathrm{HgCl}_{4}{ }^{2-}, \mathrm{Hg}_{2} \mathrm{Cl}_{2}$
(B) $\mathrm{Ag}_{2} \mathrm{~S}, \mathrm{AgCl}_{2}^{-}, \mathrm{AgCl}$
(C) $\mathrm{CoS}, \mathrm{CoCl}_{4}^{-}, \mathrm{CoCl}_{2}$
(D) $\mathrm{CuS}, \mathrm{CuCl}_{4}^{2-}, \mathrm{CuCl}$
36. When anisole is cleaved with HI the product formed will be: (A) Iodobenzene and methanol (B) Phenol and methyl iodide (C) Iodobenzene, phenol and methyl iodide
(D) None of this
37. The species $\mathbf{X}$ in the following schemes is
(A)



(B)

(C)

(D)

38 (i) $-\mathrm{CH}(\mathrm{OMe}) \mathrm{OH}$
(ii) -CHO
(iii) $-\mathrm{CH}_{2} \mathrm{CMe}_{3}$
(iv) $-\mathrm{CH}_{2} \mathrm{CH}(\mathrm{Me}) \mathrm{CH}_{2} \mathrm{OH}$

Increasing order of of the above groups according to CIP rule is:
(A) ii $>$ i $>$ iv $>$ iii
(B) i >.ii > iii > iv
(C) ii $>$ iv $>$ i $>$ iii
(D) i $>$ iv $>$ ii $>$ iii
39. Values of formal charge on $\mathrm{N}, \mathrm{C}$ and S atoms in $\mathrm{H}-\mathrm{N}=\mathrm{C}=\mathrm{S}$ is: (A) $1-, 0,0$ (B) $1+, 0,0(\mathbf{C}) 0,0,1+(\mathbf{D}) 0,1+, 0$.
40. The p orbitals of M in $\mathrm{ML}_{2}$ complex (bond axis $=\mathrm{z}$-axis) will have energy order
(A) $\mathrm{p}_{\mathrm{x}}=\mathrm{p}_{\mathrm{y}}=\mathrm{p}_{\mathrm{z}}$ (B) $\mathrm{p}_{\mathrm{x}}>\mathrm{p}_{\mathrm{y}}>\mathrm{p}_{\mathrm{z}} \quad$ (C) $\mathrm{p}_{\mathrm{x}}=\mathrm{p}_{\mathrm{z}}<\mathrm{p}_{\mathrm{y}}$ (D) $\mathrm{p}_{\mathrm{x}}=\mathrm{p}_{\mathrm{y}}<\mathrm{p}_{\mathrm{z}}$
41. Among $\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}$, tautomerism is exhibited by:
(a)

(b)

(c)

(d)

(A) a only
(B) a, b, c
(C) a, c. d
(D) $\mathrm{b}, \mathrm{c}, \mathrm{d}$
42. Arrangement of the following with increasing effective magnetic moment (BM) value of (i) $\mathrm{NiF}_{6}{ }^{2-}$ (ii) $\mathrm{CoF}_{6}{ }^{3-}$ (iii) $\mathrm{CuF}_{6}{ }^{3-}$ (iv) $\mathrm{MnF}_{6}{ }^{4-}$ is (A) iv $>$ ii $>\mathrm{iii}>\mathrm{I}(\mathrm{B}) \mathrm{i}<\mathrm{ii}<\mathrm{iii}<\mathrm{iv}(\mathrm{C})$ iv $<\mathrm{ii}<\mathrm{iii}<\mathrm{i}(\mathrm{D})$ iii $>$ ii $>\mathrm{i}>$ iv . ]
43. Which one will be the Russel Saunders term (lowest energy) in $d^{5}$ high spin complex?
(A) ${ }^{6} \mathrm{~T}_{2 \mathrm{~g}}$
(B) ${ }^{6} \mathrm{E}_{\mathrm{g}}$
(C) ${ }^{6} \mathrm{~T}_{1 \mathrm{~g}}$
(D) ${ }^{6} \mathrm{~A}_{1 g}$
44. The orbitals of As used for hybridization in $\mathrm{AsF}_{5}$ are
(A) $\mathrm{d}_{\mathrm{z} 2}, \mathrm{~s}, \mathrm{p}_{\mathrm{x}}, \mathrm{p}_{\mathrm{y}}, \mathrm{p}_{\mathrm{z}}$
(B)
B) $\mathrm{d}_{\mathrm{x} 2-\mathrm{y} 2}, \mathrm{~s}, \mathrm{p}_{\mathrm{x}}, \mathrm{p}_{\mathrm{y}}, \mathrm{p}_{2}$
(C) $\mathrm{s}, \mathrm{p}_{\mathrm{x}}, \mathrm{p}$
$p_{y}, p_{z}, d_{x}$ (D) $s, p_{x}, p_{y}, p_{z}, d_{z 2}$
45. Bond order of $\mathrm{O}_{2}^{+}, \mathrm{O}_{2}^{-}, \mathrm{O}_{2}^{2-}$ are : (A) $1.0,2.5,1.5$ (B) $1.5,2.5,1.0$ (C) $2.5,1.5,1.0$ (D) $2.5,1.0,1.5$.
46. The following rearrangement reaction yields

47. Assuming hydrogen ion concentration unity throughout the experiment, the equivalent potential (in Volt) for the titration of $100.0 \mathrm{ml} 0.1(\mathrm{~N}) \mathrm{Fe}^{2+}$ with $0.1(\mathrm{~N}) \mathrm{KMnO}_{4}$ will be $\quad\left[G i v e n: \mathrm{E}^{0}\right.$ for $\mathrm{Fe}^{3+} / \mathrm{Fe}^{2+}=0.77 \mathrm{~V}$ and for $\mathrm{MnO}_{4}^{-} / \mathrm{Mn}^{2+}$
$=1.51 \mathrm{~V}]$ :
(A) 1.51
(B) 0.77
(C) 1.39
(D) 0.343
48. The CFSE values in $\mathrm{Dq}_{0}($ Neglect P$)$ of $\left[\mathrm{CoF}_{6}\right]^{3-},\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}$, and $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$ will be
$\begin{array}{llll}\text { (A) } 4,24,6 & \text { (B) } 24,24,6 & \text { (C) } 4,4,6 & \text { (D) } 24,4,6\end{array}$
49. Which statement is incorrect about CO ligands?
(A) A CO ligand can accept electrons into its $\pi^{*} \mathrm{MO}$; this weakens the $\mathrm{C}-\mathrm{O}$ bond (B) In the IR spectrum of $\mathrm{Fe}(\mathrm{CO})_{5}$, absorptions assigned to the CO stretching modes are at higher wave number than that of free $\mathrm{CO} \quad$ (C) CO ligands can adopt terminal, $\mu$ and $\mu_{3}$ bonding modes; the amount of back donation depends on the bonding mode (D) Fluxional behavior is common in metal carbonyl compounds, and can be investigated by ${ }^{13} \mathrm{C}$ NMR spectroscopy
50. N-O bond length in $\mathrm{NO}^{+}$, NO and $\mathrm{NO}^{-}$species is in the order
(A) $\mathrm{NO}^{+}<\mathrm{NO}<\mathrm{NO}^{-}$
(B) $\mathrm{NO}^{+}>\mathrm{NO}>\mathrm{NO}^{-}$
(C) $\mathrm{NO}^{+}>\mathrm{NO}^{-}>\mathrm{NO}$
(D) $\mathrm{NO}^{+}<\mathrm{NO}^{-}<\mathrm{NO}$

